CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract.

نویسندگان

  • D A Schwartz
  • T J Quinn
  • P S Thorne
  • S Sayeed
  • A K Yi
  • A M Krieg
چکیده

Since unmethylated CpG motifs are more frequent in DNA from bacteria than vertebrates, and the unmethylated CpG motif has recently been reported to have stimulatory effects on lymphocytes, we speculated that bacterial DNA may induce inflammation in the lower respiratory tract through its content of unmethylated CpG motifs. To determine the role of bacterial DNA in lower airway inflammation, we intratracheally instilled prokaryotic and eukaryotic DNA in C3H/HeBFEJ mice and performed whole lung lavage 4 h after the exposure. Heat denatured, single stranded Escherichia coli genomic DNA (0.06 ng endotoxin/microg DNA) was compared to heat denatured, single stranded calf thymus DNA (0.007 endotoxin/microg DNA). 10 microg of bacterial DNA, in comparison to 10 microg of calf thymus DNA, resulted in a fourfold increase in the concentration of cells (P = 0.0002), a fivefold increase in the concentration of neutrophils (P = 0.0002), a 50-fold increase in the concentration of TNF-alpha (P = 0.001), and a fourfold increase in the concentration of both IL-6 (P = 0.0003) and macrophage inflammatory protein-2 (P = 0.0001) in the lavage fluid. Importantly, instillation of 0.60 ng of E. coli LPS resulted in a negligible inflammatory response. To test whether the stimulatory effects of bacterial DNA are due to its unmethylated CpG dinucleotides, we methylated the bacterial DNA and also prepared 20 base pair oligonucleotides with and without CpG motifs. In comparison to instillation of untreated bacterial DNA, methylation of the bacterial DNA resulted in a significant reduction in the concentration of cells and cytokines in the lower respiratory tract. Moreover, oligonucleotides containing embedded unmethylated CpG motifs resulted in inflammation in the lower respiratory tract that was indistinguishable from that observed with untreated bacterial DNA. In contrast, oligonucleotides without the embedded CpG motifs or with embedded but methylated CpG motifs resulted in significantly less inflammation in the lower respiratory tract. The possible relevance of these data to human disease was shown by extracting and analyzing DNA in sputum from patients with cystic fibrosis (CF). Approximately 0.1 to 1% of this sputum DNA was bacterial. Intratracheal instillation of highly purified CF sputum DNA caused acute inflammation similar to that induced by bacterial DNA. These findings suggest that bacterial DNA, and unmethylated CpG motifs in particular, may play an important pathogenic role in inflammatory lung disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial DNA delays human eosinophil apoptosis.

Oligodeoxynucleotide (ODN) sequences containing unmethylated cytidine phosphate guanosine (CpG) motifs prevalent in bacterial DNA attenuate allergic lung inflammation in experimental models of asthma but failed to inhibit eosinophilia and improve lung function in patients with asthma. Bacterial respiratory tract infections exacerbate asthma in humans. Increased eosinophil survival is a critical...

متن کامل

Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway.

To determine whether the systemic immune activation by CpG DNA could alter airway inflammation, we pretreated mice with either i.v. bacterial DNA (bDNA) or oligonucleotides with or without CpG motifs, exposed these mice to LPS by inhalation, and measured the inflammatory response systemically and in the lung immediately following LPS inhalation. Compared with non-CpG oligonucleotides, i. v. tre...

متن کامل

CpG DNA analysis of bacterial STDs

BACKGROUND Bacterial infections in the genital tract frequently result in morbidity through a variety of inflammation based symptoms. One component of the bacteria that may trigger host inflammatory response is their DNA. CpG motifs in this DNA are known targets for Toll-like receptor 9 (TLR9), which is a pathogen-recognition receptors focusing on CpG DNA. The activation of TLR9 induces the NF-...

متن کامل

Cryptosporidial Infection of Lower Respiratory Tract in a Budgerigar (Melopsittacus undulates)

Cryptosporial and bacterial co-infection is reported in a budgerigar with clinical manifestations of septicemia and respiratory tract infection. Microscopically large number of round to oval 2-5μm cryptosporidial organisms were found to be lodged on the parabronchial epithelial cells of the respiratory tract. The bacterial colonies were seen around the parabronchial spaces of the lung tissue. I...

متن کامل

CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes.

Human neutrophil granulocytes die rapidly, and their survival is contingent upon rescue from programmed cell death by signals from the environment. We now show that a novel signal for delaying neutrophil apoptosis is unmethylated CpG motifs prevalent in bacterial DNA (CpG- DNA). Human neutrophils express toll-like receptor 9 that recognizes these motifs. CpG-DNA, but not mammalian DNA or methyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 1997